Identification and characterization of cytosolic fructose-1,6-bisphosphatase in Euglena gracilis.

نویسندگان

  • Takahisa Ogawa
  • Ayako Kimura
  • Harumi Sakuyama
  • Masahiro Tamoi
  • Takahiro Ishikawa
  • Shigeru Shigeoka
چکیده

Euglena gracilis has the ability to accumulate a storage polysaccharide, a β-1,3-glucan known as paramylon, under aerobic conditions. Under anaerobic conditions, E. gracilis cells degrade paramylon and synthesize wax esters. Cytosolic fructose-1,6-bisphosphatase (FBPase) appears to be a key enzyme in gluconeogenesis and position branch point of carbon partitioning between paramylon and wax ester biosynthesis. We herein identified and characterized cytosolic FBPase from E. gracilis. The Km and Vmax values of EgFBPaseIII were 16.5 ± 1.6 μM and 30.4 ± 7.2 μmol min(-1) mg protein(-1), respectively. The activity of EgFBPaseIII was not regulated by AMP or reversible redox modulation. No significant differences were observed in the production of paramylon in transiently suppressed EgFBPaseIII gene expression cells by RNAi (KD-EgFBPaseIII); nevertheless, FBPase activity was markedly decreased in KD-EgFBPaseIII cells. On the other hand, the growth of KD-EgFBPaseIII cells was slightly higher than that of control cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and physiological role of two types of chloroplastic fructose-1,6-bisphosphatases in Euglena gracilis.

The chloroplastic fructose-1,6-bisphosphatase (FBPase) is a late-limiting enzyme in the Calvin cycle. In the present study, we isolated and characterized the cDNAs encoding two types of chloroplastic FBPase isoforms (EgFBPaseI and II) from Euglena gracilis. The Km values of recombinant EgFBPaseI and EgFBPaseII for fructose 1,6-bisphosphate (Fru 1,6-P2) were 165 ± 17 and 2200 ± 200 μM, respectiv...

متن کامل

Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production

BACKGROUND Microalgae have recently been attracting attention as a potential platform for the production of biofuels. Euglena gracilis, a unicellular phytoflagellate, has been proposed as an attractive feedstock to produce biodiesel because it can produce large amounts of wax esters, consisting of medium-chain fatty acids and alcohols with 14:0 carbon chains. E. gracilis cells highly accumulate...

متن کامل

Complete amino acid sequence of pig kidney fructose-1,6-bisphosphatase.

The covalent structure of the pig kidney fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) subunit has been determined. Placement of the 335 amino acid residues in the polypeptide chain was based largely on automated Edman degradation of eight purified cyanogen bromide fragments generated from the S-carboxymethylated protein. The determination of the amin...

متن کامل

Reduced Cytosolic Fructose-1,6-Bisphosphatase Activity Leads to Loss of O(2) Sensitivity in a Flaveria linearis Mutant.

The mutant plant of Flaveria linearis characterized by Brown et al. (Plant Physiol. 81: 212-215) was studied to determine the cause of the reduced sensitivity to O(2). Analysis of CO(2) assimilation metabolites of freeze clamped leaves revealed that both 3-phosphoglycerate and ribulose 1,5-bisphosphate were high in the mutant plant relative to F. linearis with normal O(2) sensitivity. The k(cat...

متن کامل

Molecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus.

The Pyrococcus furiosus fbpA gene was cloned and expressed in Escherichia coli, and the fructose-1,6-bisphosphatase produced was subsequently purified and characterized. The dimeric enzyme showed a preference for fructose-1,6-bisphosphate, with a K(m) of 0.32 mM and a V(max) of 12.2 U/mg. The P. furiosus fructose-1,6-bisphosphatase was strongly inhibited by Li(+) (50% inhibitory concentration, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 79 12  شماره 

صفحات  -

تاریخ انتشار 2015